The Data Sciences Bachelor of Science program is part of an intercollege initiative to meet the need for professionals who can make sense of big data. The program provides students with the technical fundamentals of data sciences, with a focus on developing the knowledge and skills needed to manage and analyze large-scale, unstructured data to address an expanding range of problems in industry, government, and academia. As a result, Data Sciences graduates will possess the core skills and problem-solving approaches to compete for leading-edge analytics positions across many different industry sectors.

The most successful students in this major are:
Analytical • Articulate • Curious • Detailed-oriented • Interpretive • Problem solvers • Quick learners • Thorough

Entrance to major requirements:
Students must choose their major by the end of their second year. To enter this major, students must have earned at least 29.1 Penn State credits and a 2.00 cumulative GPA at the time of applying to the major. Please check with your Penn State adviser for the most current information.

Options within this major

Students can select from one of three options within the Data Sciences major:

- **Applied Data Sciences** (offered by the College of Information Sciences and Technology)
- **Computational Data Sciences** (offered by the College of Engineering, engr.psu.edu)
- **Statistical Modeling Data Sciences** (offered by the Eberly College of Science, science.psu.edu)

Applied Data Sciences

Study the principles, methods, and tools for management, integration, analysis, visualization, and predictive modeling of massive, complex data. Students will learn how to develop, apply, and validate machine learning solutions to extract actionable knowledge from large data sets. Whether it’s predicting disease patterns to save more lives, analyzing financial markets, or optimizing marketing strategies based on customer behavior, students will unlock big data to solve an infinite range of problems in industry, government, and academia.
All Data Sciences options require 50 credits of prescribed coursework, with 41 of these credits earned through common required courses and the remaining nine credits selected by the student from a defined list. These courses include two semesters of programming and calculus, concepts and skills relating to statistics and databases, and a capstone course (DS 440). The Applied Data Sciences option also requires the student to earn 40 additional credits through 14 courses that will expand skills in applying data sciences techniques and concepts to real-world problems.

When selections are allowed, students should plan a coherent set of choices in consultation with his or her adviser.

ADDITIONAL PRESCRIBED COURSES:
In addition to the requirements above, students pursuing an degree in the Applied Data Sciences option must complete 22 credits in the following courses:

- IST 110 – Information, People and Technology
- DS 200 – Introduction to Data Sciences
- DS 220 – Data Management for Data Sciences
- DS 310 – Machine Learning for Data Analytics
- DS 320 – Integration and Fusion
- DS 330 – Visual Analytics for Data Sciences
- DS 410 – Data Analytics at Scale
- IST 495 – Approved Internship

OTHER SELECTED COURSES:
Students in the Applied Data Sciences option must take 18 additional credits, which can be selected from a list of available courses such as those below:

- STAT 380 – Data Science through Statistical Reasoning and Computation
 Take a holistic view of statistical analysis through case studies to obtain, clean, and interpret data. Use the R programming language and novel computing techniques to build upon introductory statistical concepts.

- DS 402 – Emerging Trends in the Data Sciences
 Explore the rapidly evolving field of Data Sciences and how it’s affected by innovation in a variety of technical fields. Learn the analytic framework to assess innovation, its potential for widespread adoption, and its implications.

- STAT 416 – Stochastic Modeling
 Learn about data distribution models, probability generating functions, transforms, convolutions, Markov chains, equilibrium distributions, Poisson process, birth and death processes, and estimation.

- CMPSC 441 – Artificial Intelligence
 Study the fundamentals of artificial intelligence and explore problem solving, search techniques, knowledge representation, planning, learning, and neural networks.